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Summary The success of treatment of patients with cancer depends on establish-
ing an accurate diagnosis. To this end, we have built a system called GEMS (gene
expression model selector) for the automated development and evaluation of high-
quality cancer diagnostic models and biomarker discovery from microarray gene
expression data. In order to determine and equip the system with the best perform-
ing diagnostic methodologies in this domain, we first conducted a comprehensive
evaluation of classification algorithms using 11 cancer microarray datasets. In this
paper we present a preliminary evaluation of the system with five new datasets.
The performance of the models produced automatically by GEMS is comparable or
better than the results obtained by human analysts. Additionally, we performed a
cross-dataset evaluation of the system. This involved using a dataset to build a diag-
nostic model and to estimate its future performance, then applying this model and
evaluating its performance on a different dataset. We found that models produced
by GEMS indeed perform well in independent samples and, furthermore, the cross-
validation performance estimates output by the system approximate well the error
obtained by the independent validation. GEMS is freely available for download for
non-commercial use from http://www.gems-system.org.
© 2005 Elsevier Ireland Ltd. All rights reserved.

1. Introduction

Development of cancer diagnostic models and dis-
covery from DNAmicroarray data is of great interest

∗ Corresponding author.
E-mail address: constantin.aliferis@vanderbilt.edu

(C.F. Aliferis).

in bioinformatics and medicine. Diagnostic models
from gene expression data go beyond traditional
histopathology and provide accurate, resource-
efficient, and replicable diagnosis [1]. Further-
more, biomarker discovery in high-dimensional
microarray data facilitates learning about the biol-
ogy of cancer [2]. Currently, building of cancer
diagnostic models from microarray gene expression
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data has three challenging components: collection
of samples, assaying, and statistical analysis. A typ-
ical statistical analysis process takes from a few
weeks to several months and involves many spe-
cialists: clinical researchers, statisticians, bioinfor-
maticians, and programmers. As a result, statistical
analysis is a serious bottleneck in the development
of cancer diagnostic models, and its enhancement
by an automated or semi-automated system will
benefit research significantly. Our goal is thus to
build a system that takes microarray data as input
and outputs a high-quality cancer diagnostic model,
produces a reliable performance estimate, allows
application of this model to unseen patients, and
enables biomarker discovery. In order for the sys-
tem to be clinically successful, it should implement
the best-known methodologies applicable to this
domain and use sound techniques for model selec-
tion and performance estimation in an automated
fashion. An ideal system should achieve the same or
better quality than human analysts and complete
the entire process within minutes or a few hours
requiring minimal human effort.

The paper is organized as follows: in Section 2,
we describe existing software systems for cancer

with boldface in Table 1) and 10 can be used
free of charge for non-profit research. All sys-
tems have several of the following limitations.
First, the performance quality of the learning algo-
rithms selected for inclusion into the systems is
unknown. Typically, the algorithmic palette reflects
the authors’ preferences and their prior publica-
tion history; there is often limited evidence that
these algorithms are indeed appropriate for this
domain and equally important, that they are among
the best performing ones. Second, many classifica-
tion algorithms implemented in the software sys-
tems are not able to handle multicategory diag-
nosis, despite that most diagnostic tasks involve
several diseases and that powerful multicategory
classification methods do exist in machine learning.
Third, none of the systems automatically optimizes
the parameters and the choice of both classifi-
cation and gene selection algorithms (also known
as model selection) while simultaneously avoiding
overfitting.1 The user of these systems is left with
two choices: either to avoid rigorous model selec-
tion and possibly discover a suboptimal model, or
to experiment with many different parameters and
algorithms and select the model with the high-
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diagnosis from microarray gene expression data as
well as prior research in this field. Section 3 sum-
marizes results of the comprehensive algorithmic
evaluation conducted in [3,4] and describes the
system GEMS (gene expression model selector). In
Section 4, we conduct an evaluation of GEMS by
applying the system to cancer microarray datasets
not used in algorithmic evaluation and by assess-
ing performance of developed diagnostic models
using microarray datasets from different labora-
tories. The results of this section constitute the
primarily novel contribution of the presented work.
Section 5 provides directions for future research
and current limitations of GEMS. The paper con-
cludes with Section 6.

2. Related work

2.1. Existing software systems

Currently, there exist many dozens of software
systems designed for microarray gene expres-
sion data analysis [5,6]. Since prior research has
demonstrated superiority of supervised classifica-
tion methods for cancer diagnosis over unsuper-
vised techniques [7], we focused only on systems
implementing supervised classification algorithms.
Using this criterion, we identified 16 software sys-
tems (Table 1): 6 are commercial (names are shown
st cross-validation performance. The latter is sub-
ect to overfitting primarily due to multiple-testing,
ince parameters and algorithms are selected after
ll the testing sets in cross-validation have been
een by the algorithms [3]. All these problems are
ddressed in GEMS.

.2. Prior methodological studies

revious studies in cancer diagnosis model cre-
tion from gene expression data provide limited
vidence for selecting the best performing learn-
ng techniques. We identified 193 primary gene
xpression-based cancer diagnosis studies using
he ONCOMINE Cancer Microarray Database [8],
he UPITT Cancer Gene Expression Data Set Link
atabase [9], and the Stanford Microarray Database
10]. A review of these studies and publications
hat reanalyzed publicly available datasets (identi-
ed by querying ISI Web of Science Cited Reference
earch and PubMed Central Citation Search for cita-
ions of primary microarray studies) revealed the
ollowing:

1 Only one commercial software system, Partek Predict by
artek Inc., attempts to automatically conduct a rigorous opti-
ization of the parameters and the choice of algorithms while
roviding unbiased performance estimates. Unfortunately, the
urrent version 6.0 of Partek Predict does not completely imple-
ent this methodology, since it does not allow optimization of
he choice of gene selection algorithms.
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Table 1 Software systems for gene expression-based cancer diagnosis (supervised classification only)
Name Version Developer Supervised classification Cross-validation

for performance
estimation

Automatic model selection
for classifier and gene
selection methods

URL

ArrayMiner
ClassMarker

5.2 Optimal Design, Belgium •K-Nearest Neighbors Yes No http://www.optimaldesign.com/ArrayMiner
•Voting

Avadis
Prophetic

3.3 Strand Genomics, USA •Decision Trees Yes No http://avadis.strandgenomics.com/
•Neural Networks
•Support Vector Machines

BRBArrayTools 3.2 Beta National Cancer Institute, USA •Compound Covariate
Predictor

Yes No http://linus.nci.nih.gov/BRB-ArrayTools.html

•Diagonal Linear Discriminant
Analysis

•Nearest Centroid
•K-Nearest Neighbors
•Support Vector Machines

caGEDA (accessed
10/2004)

University of Pittsburgh and University
of Pittsburgh Medical Center, USA

•Nearest Neighbors Methods Yes No http://bioinformatics.upmc.edu/GE2/
GEDA.html•Näıve Bayes Classifier

Cleaver 1.0
(accessed
10/2004)

Stanford University, USA •Linear Discriminant Analysis Yes No http://classify.stanford.edu/

GeneCluster2 2.1.7 Broad Institute, Massachusetts Institute
of Technology, USA

•Weighted Voting Yes No http://www.broad.mit.edu/cancer/software
•K-Nearest Neighbors

GeneLinker
Platinum

4.5 Predictive Patterns Software, Canada •Neural Networks Yes No http://www.predictivepatterns.com/
•Support Vector Machines
•Linear Discriminant Analysis
•Quadratic Discriminant
Analysis

•Uniform/Gaussian
Discriminant Analysis

GeneMaths XT 1.02 Applied Maths, Belgium •Neural Networks Yes No http://www.applied-maths.com/genemaths/
genemaths.htm•K-Nearest Neighbors

•Support Vector Machines
GenePattern 1.2.1 Broad Institute, Massachusetts Institute

of Technology, USA
•Weighted Voting Yes No http://www.broad.mit.edu/cancer/software
•K-Nearest Neighbors
•Support Vector Machines

Genesis 1.5.0 Graz University of Technology, Austria •Support Vector Machines No No http://genome.tugraz.at/Software/Genesis/
Genesis.html

GeneSpring 7 Silicon Genetics, USA •K-Nearest Neighbors Yes No http://www.silicongenetics.com/
•Support Vector Machines

GEPAS 1.1
(accessed
10/2004)

National Center for Cancer Research
(CNIO), Spain

•K-Nearest Neighbors Yes Limited (for number of
genes)

http://gepas.bioinfo.cnio.es/tools.html
•Support Vector Machines
•Diagonal Linear Discriminant
Analysis

http://www.optimaldesign.com/arrayminer
http://avadis.strandgenomics.com/
http://linus.nci.nih.gov/brb-arraytools.html
http://bioinformatics.upmc.edu/ge2/geda.html
http://bioinformatics.upmc.edu/ge2/geda.html
http://classify.stanford.edu/
http://www.broad.mit.edu/cancer/software
http://www.predictivepatterns.com/
http://www.applied-maths.com/genemaths/genemaths.htm
http://www.applied-maths.com/genemaths/genemaths.htm
http://www.broad.mit.edu/cancer/software
http://genome.tugraz.at/software/genesis/genesis.html
http://genome.tugraz.at/software/genesis/genesis.html
http://www.silicongenetics.com/
http://gepas.bioinfo.cnio.es/tools.html
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• a typical study applies only a few (usually,
2—3) classification algorithms to a single cancer
microarray dataset;

• the majority of diagnostic tasks pursued by the
studies are binary (i.e. with two possible out-
comes), whereas real-life diagnostic problems
are generally multicategory;

• researchers often apply parametric classifiers
without rigorous optimization of their parame-
ters;

• different computational experimental designs
employed by the studies (e.g., N-fold cross-
validation, leave-one-out cross-validation, hold-
out cross-validation, bootstrapping, etc.) make
the findings incomparable.

We also located two meta-analyses covering the
scope of our research [11,12]. According to [11],
only 26% of studies in this domain attempted inde-
pendent validation or cross-validation of their find-
ings. This questions whether published results will
generalize well to unseen patients. Unfortunately,
neither of these two meta-analyses is aimed at
the identification of the best performing method-
ologies, nor can be used to do so. The meta-
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nalysis by Ntzani and Ioannidis [11] examined
he predictive performance of DNA microarrays for
ancer diagnosis and prognosis in general, with-
ut resorting to specific algorithms. The meta-
nalysis by Rhodes et al. [12] is geared toward
iomarker assessment across 40 studies and uses
single simplistic biomarker discovery method

nd an equally simplistic and a non-standard
lassifier.
In addition, two recent bioinformatics studies

13,14] performed comparative analyses of mul-
icategory classification algorithms in the cancer
ene expression domain. However, the results of
hese evaluations cannot serve as a basis for the
evelopment of cancer diagnostic decision sup-
ort system for the following two reasons: first,
oth evaluations are limited only to two microar-
ay datasets and second, neither study optimized
arameters of the classifiers in all datasets, which
s likely to result in suboptimal application of diag-
ostic methods.
For the above reasons, and given the plethora

f classification algorithms applicable to gene
xpression-based cancer diagnostic problems, it
as unclear what constitutes a small subset
f methods that perform optimally across many
atasets and cancer types. Therefore, we decided
o conduct such an evaluation de novo in order to
ase our system on the currently best techniques
or the chosen task and domain. The methods and
esults of this evaluation are discussed in two com-

http://www.tigr.org/software/tm4/mev.html
http://www-stat.stanford.edu/%7etibs/pam/
http://www.partek.com/
http://www.cs.waikato.ac.nz/ml/weka/
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panion publications [3,4] and summarized in the
next section.

3. GEMS methods and development

3.1. Nested cross-validation procedure

At the core of our algorithmic evaluation is a nested
cross-validation procedure [15,16]. This experi-
mentation protocol allows the simultaneous opti-
mal selection of parameters (tuning) of a classifier
and the unbiased (non-overfitted) estimation of the
performance of the final diagnostic model. Cross-
validation is a method for providing an estimate of
the performance of a diagnostic model produced by
a learning procedure A on available data D. First,
one partitions the data D into N non-overlapping
and balanced subsets of cases. Then, the following
is repeated N times: A is trained on the N-1 sub-
sets (training set) and tested on the hold-out sub-
set (testing set). Finally, the average performance
� of A over the N testing sets is reported. This
methodology produces an unbiased performance
estimate � of the model produced by A by train-
i
c
p
f
s

i
t
fi
b
˛

f

•

•

• choice of algorithms applied prior to classifi-
cation, such as gene selection, normalization,
imputation, and others (e.g., gene selection by
signal-to-noise ratio, gene selection by ANOVA);

• parameters of algorithms applied prior to clas-
sification (e.g., number of genes to be used for
classification).

To estimate the optimal value of the parameter
˛, cross-validation is used again. The performance
P(i) of learner A trained with parameter ˛i is esti-
mated for i = 1, . . ., m by cross-validation. The final
model is built by training A on all available data D
using the parameter ˛j, where j = argmax P(i) for
i = 1, . . ., m (Fig. 2). Notice that in Fig. 2 cross-
validation is used only for model selection and it
does not provide an unbiased performance estimate
for the final model and so we call this procedure
cross-validation for model selection.

In order to combine optimal model selection
and unbiased performance estimation, the cross-
validation for model selection is ‘‘nested’’ inside
the cross-validation for performance estimation
to obtain the nested cross-validation procedure
(Fig. 3). The dashed box in Fig. 3 corresponds to
cross-validation for model selection (steps 1.1, 1.2,
a
i
S
u
r

m
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v
c
o
f
o
a

for p
ng on all the available data D (i.e., all N subsets
omprise the training set). The pseudo-code of the
rocedure referred to as cross-validation for per-
ormance estimation is shown in Fig. 1, where for
implicity A is a classifier with a fixed parameter ˛.
Typically, however, a classifier used for learning

s parametric and the optimal value of parame-
ers should be estimated and used to produce the
nal model. Let us assume that the classifier can
e applied with parameter ˛ taking m values = {˛1,
2, ˛3, . . ., ˛m−1, ˛m}, where ˛i is a vector with the
ollowing parameters:

choice of classification algorithms (e.g., K-
Nearest Neighbors, Support Vector Machines
(SVMs));
parameters of the specific classification algo-
rithms (e.g., number of neighbors K for K-Nearest
Neighbors, penalty parameter C for Support Vec-
tor Machines);

Fig. 1 Cross-validation
nd 1.3) ‘‘nested’’ into the steps 1 and 2 belong-
ng to cross-validation for performance estimation.
ince the optimized classifier is each time eval-
ated on a testing set not used for learning, the
esulting performance estimate � is unbiased.
The algorithm in Fig. 3 avoids the following com-
on pitfall in estimating the performance of a diag-
ostic model produced by a parametric classifier:
uite often, the procedure in Fig. 2 is used to iden-
ify the best parameter values and to build the final
odel; however, the best cross-validation perfor-
ance P(j), where j = argmax P(i) for i = 1, . . ., m
s often reported as an estimate of performance of
he final model, instead of applying a second cross-
alidation loop over the whole model selection pro-
edure as in Fig. 3. For a sufficiently large number
f attempted parameter values, one is likely to be
ound that by chance alone provides a high estimate
f cross-validation performance. The less the avail-
ble sample is, and the more complex models the

erformance estimation.
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Fig. 2 Cross-validation for model selection.

classifier can build, the more acute becomes the
problem. In contrast, the described nested cross-
validation protocol will be able to identify whether
the model selection procedure is selecting values
that by accident produce models that perform well
on the test sets, or indeed they generalize well to
unseen cases.

3.2. Algorithmic evaluation

To determine which algorithms should comprise the
basis of our system, we conducted a comprehensive
algorithmic evaluation [3,4] (Table 2). Performance
estimation and model selection were performed
by two nested cross-validation designs: one based
on 10-fold cross-validation and another based on
leave-one-out cross-validation. We used 11 classi-
fication algorithms that are: (I) relatively insen-
sitive to low sample-to-variable ratio, (II) consid-
ered robust in bioinformatics and machine learn-
ing research, (III) allow multicategory classifica-
tion, and (IV) represent major families of learning
machines. Since the employed classifiers are differ-
ent in a sense that they give preference to different
models, the final classification performance may be

improved via use of algorithms that combine out-
puts of individual classifiers, so-called ensembles
of classifiers. Therefore, we explored seven types
of ensemble classification algorithms. In the case
of ensemble classification, the input dataset con-
sisted of attributes corresponding to the outputs
of classifiers and the original class labels. We also
applied four gene selection techniques to investi-
gate the improvement of classification performance
by reduction of the number of predictive variables.
Two performance metrics were used to assess clas-
sifications: accuracy and the entropy-based relative
classifier information metric. Whereas the former
metric allows comparison with the prior studies, the
latter one is insensitive to unbalanced distribution
of diagnostic categories. Finally, a randomized per-
mutation procedure was devised and employed to
determine whether the classifiers produce differ-
ent predictions to a statistically significant degree.
Details on the application of the methods are pro-
vided in [3,4] and references therein.

The previous algorithms were applied to 11
microarray cancer gene expression datasets (see
Table 3 and [3,4] for references to the primary
studies). Most of the datasets were obtained using

ion i
Fig. 3 Nested cross-validation for performance estimat
(dashed box).
n the outer loop and model selection in the inner loop
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Table 2 Methods used for comprehensive evaluation
of algorithms for cancer diagnosis from microarray
gene expression data

Classification algorithms
•K-Nearest Neighbors
•Backpropagation Neural Networks
•Probabilistic Neural Networks
•Multi-Class SVM: one-versus-rest
•Multi-Class SVM: one-versus-one
•Multi-Class SVM: DAGSVM
•Multi-Class SVM by Weston and Watkins
•Multi-Class SVM by Crammer and Singer
•Weighted Voting: one-versus-rest
•Weighted Voting: one-versus-one
•Decision Trees: CART

Ensemble classification algorithms
Based on outputs of Multi-Class SVM methods

•Majority voting
•Decision Trees: CART
•Multi-Class SVM: DAGSVM
•Multi-Class SVM: one-versus-rest
•Multi-Class SVM: one-versus-one

Based on outputs of all classifiers
•Majority voting
•Decision Trees: CART

Computational experimental design
•Leave-one-out cross-validation for performance
estimation (outer loop) and 10-fold
cross-validation for model selection (inner loop)

•10-fold cross-validation for performance
estimation (outer loop) and 9-fold
cross-validation for model selection (inner loop)

Gene selection methods
•Signal-to-noise ratio in one-versus-rest fashion
•Signal-to-noise ratio in one-versus-one fashion
•Kruskal—Wallis nonparametric one-way ANOVA
•Ratio of genes between-categories to
within-category sum of squares

Performance metrics
•Accuracy
•Relative classifier information (entropy-based
performance metric)

Statistical comparison among classifiers
•Custom randomized permutation procedure

oligonucleotide technology. These datasets were
chosen because they contain a relatively large sam-
ple and are often used in bioinformatics as bench-
marks. Overall, the 11 datasets had 2—26 distinct
diagnostic categories, 50—308 samples (patients),
and 2308—15,009 variables (genes) after removing
genes with absent calls [3].

In order to make our experiments computation-
ally feasible, we followed a staged experimental
design. In the first stage, the two nested cross-
validation designs (10-fold and leave-one-out cross-
validation) were executed with all classifiers and
all datasets without gene selection. In the second
stage, we applied four gene selection techniques
only to the datasets where the resulting accu-
racy was not near perfect (operationally defined
as <90%). The staged factorial design allowed us to
complete experiments within 4 single CPU months
and led to development of 2.6 million diagnostic
models.

The results of this evaluation are described in
detail in [3,4] and the online supplement to [3]
available for download from http://www.gems-
system.org. In summary, we concluded the follow-
ing:

• for multicategory classification of cancer from
microarray gene expression data, Support Vec-
tor Machines are the best performing family
among the tested algorithms outperforming K-
Nearest Neighbors, Backpropagation Neural Net-
works, Probabilistic Neural Networks, Decision

•

•

•

•

3
i

G
e
t
i
d
f

Trees, and Weighted Voting classifiers to a sta-
tistically significant degree;
among multicategory Support Vector Machines,
the best performing techniques are: one-versus-
rest, the method by Weston and Watkins, and the
method by Crammer and Singer;
the diagnostic performance can be moderately
improved for SVMs and significantly improved for
the non-SVM methods by gene selection;
ensemble classification does not improve perfor-
mance of the best non-ensemble diagnostic mod-
els;
the obtained results favorably compare with the
primary literature on the same datasets.

.3. System functionality and
mplementation

EMS incorporates the results of the algorithmic
valuation by providing to the user an implemen-
ation of all and only the best performing learn-
ng algorithms in this domain. Given a microarray
ataset on input, the system can automatically per-
orm one the following tasks:

I. Generate a classification model optimizing the
parameters of classification and gene selection
algorithms as well as the choice of the clas-
sifier and gene selection methods using cross-
validation for model selection (Fig. 2).

http://www.gems-system.org/
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Table 3 Cancer-related human gene expression datasets used for evaluation

Dataset name Diagnostic task Number of Max.
prior (%)Samples Variables

(genes)
Categories Variables/

samples

11 Tumors 11 various human tumor types 174 12533 11 72 15.5
14 Tumors 14 various human tumor types and 12

normal tissue types
308 15009 26 49 9.7

9 Tumors 9 various human tumor types 60 5726 9 95 15.0
Brain Tumor1 5 human brain tumor types 90 5920 5 66 66.7
Brain Tumor2 4 malignant glioma types 50 10367 4 207 30.0
Leukemia1 Acute myelogenous leukemia (AML),

acute lympboblastic leukemia (ALL)
B-cell, and ALL T-cell

72 5327 3 74 52.8

Leukemia2 AML, ALL, and mixed-lineage leukemia
(MLL)

72 11225 3 156 38.9

Lung Cancer 4 lung cancer types and normal tissues 203 12600 5 62 68.5
SRBCT Small, round blue cell tumors (SRBCT) of

childhood
83 2308 4 28 34.9

Prostate
Tumor

Prostate tumor and normal tissues 102 10509 2 103 51.0

DLBCL Diffuse large B-cell lymphomas (DLBCL)
and follicular lymphomas

77 5469 2 71 75.3

The column ‘‘Max. prior’’ indicates the prior probability of the dominant diagnostic category.

II. Estimate classification performance of the opti-
mized model by nested cross-validation (Fig. 3).

III. Perform tasks I and II, i.e. generate a classifica-
tion model and estimate its performance.

IV. Apply an existing model to a new set of patients.

In order to execute the tasks mentioned above,
the user may select the type of the experimen-
tal design (N-fold cross-validation or leave-one-out
cross-validation), the algorithm(s) to be used for
classification, gene selection, and normalization,
and the ranges of parameters over which opti-
mization should take place. Table 4 summarizes
all implemented algorithms. As the system evolved
and based on discussions with our biomedical col-
leagues, we added new functionality to the system,
namely, several simple gene expression normaliza-
tion methods, area under ROC curve performance
metric (for binary diagnostic problems), and two
state of the art local causal discovery algorithms
[17,18] shown with boldface in Table 4. To guide
the user’s choices according to the available com-
putational power and time, the system outputs
the number of models to be generated while the
user is selecting analysis options. GEMS provides an
intuitive wizard-like user interface abstracting the

the interface consists a form with options for a spe-
cific stage of analysis (Fig. 4):

• overall task selection
• dataset specification
• cross-validation design
• normalization
• classification
• gene selection
• performance estimation
• logging
• report generation
• execution of analysis

Since the system can perform one out of four
tasks outlined above, each task corresponds to a
different sequence of steps. The overall software
architecture of GEMS is shown in Fig. 5. The sys-
tem implements a client-server architecture con-
sisting of a computational engine and an interface
client. The computational engine is separated from
the client and consists of intercommunicating func-
tional units corresponding to different aspects of
analysis. Upon completion of analysis, a detailed
r
s
N
T
u
e
a

microarray data analysis process and not requiring
users to be experts in data analysis.2 Each step in

2 Unlike the version 2.0 of GEMS discussed in this paper, the
previous version 1.0 of the system introduced in [3,4] possesses a
power-user interface with all analysis options placed on a single
form.
eport is generated in HTML format with links to
ystem input and output files as well as links to
CBI website with information on selected genes.
he GEMS graphics user interface is implemented
sing Borland Delphi 6.0 and the computational
ngine is programmed in Mathworks Matlab 6.5.1
nd Microsoft Visual C++ 6.0.
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Table 4 Algorithms implemented in GEMS

Classification algorithms
•Multi-Class SVM: one-versus-rest
•Multi-Class SVM: one-versus-one
•Multi-Class SVM: DAGSVM
•Multi-Class SVM by Weston and Watkins
•Multi-Class SVM by Crammer and Singer

Gene selection methods
•Signal-to-noise ratio in one-versus-rest fashion
•Signal-to-noise ratio in one-versus-one fashion
•Kruskal—Wallis nonparametric one-way ANOVA
•Ratio of genes between-categories to
within-category sum of squares

•HITON PC
•HITON MB

Normalization techniques
•For every gene x→ [a, b]
•For every gene x → [x −mean (x)]/std. (x)
•For every gene x → x/std. (x)
•For every gene x → x/mean (x)
•For every gene x → x/median (x)
•For every gene x → x/||x||
•For every gene x → x −mean (x)
•For every gene x → x −median (x)
•For every gene x → |x|
•For every gene x → x+ |x|
•For every gene x → log(x)

Computational experimental design
•Leave-one-out cross-validation for performance
estimation (outer loop) and N-fold
cross-validation for model selection (inner loop)

•N-fold cross-validation for performance
estimation (outer loop) and (N− 1)-fold
cross-validation for model selection (inner loop)

•Leave-one-out cross-validation for model selection
•N-fold cross-validation for model selection

Performance metrics
•Accuracy
•Relative classifier information (entropy-based
performance metric)

•Area under ROC curve (AUC)

4. Preliminary evaluation of the system

In order to debug the interface and the algorith-
mic engine of the system, we repeated most of
experiments performed in [3,4] using GEMS, and we
found that published results completely matched
the system outputs. Next, we performed two stud-
ies to evaluate the system. First, we applied GEMS
to several microarray datasets, not included in our
previous study, and compared the resulting system
performance with the published models. Second,

we performed a cross-dataset evaluation of the
system. This involved using the system to build a
classifier from a gene-expression dataset, estimat-
ing its cross-validation performance on the same
dataset, and then applying that classifier to a dif-
ferent dataset (using the same genes and diagnos-
tic target) produced by an independent research
group.

4.1. Application of GEMS to new datasets

We selected five human cancer microarray gene
expression datasets to test our system: 6 Tumors
[19], Leukemia3 [20], Lung Cancer2 [21], DLBCL2
[22], and Lung Cancer33 [23] (see Table 5 for
description of datasets and diagnostic tasks). All
five datasets were produced using Affymetrix
oligonucleotide technology and processed as in [3].
None of these datasets was included in our previous
studies [3,4].

The results of application of GEMS to these
datasets are presented in Table 6.4 The analy-
ses completed within 10—30min per dataset and
yielded performance results comparable or better
than ones obtained by human analysts and previ-
o
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usly published in literature.

.2. Cross-dataset evaluation of the system

any researchers believe that even though small
ross-validation error is an important finding, it
till requires further validation on an independent
ata [7]. There are two reasons for doing this:
1) cross-validation performance estimates in very
mall samples may have large variance, and (2) the
ataset may not be representative of the general
opulation. Therefore, we used GEMS to conduct
wo analyses with construction and evaluation of
he classifier on one dataset and consecutive inde-
endent validation on another data. The results
re summarized in Table 7, and the text below
escribes our experiments and findings in detail.

3 This dataset contains the same adenocarcinoma samples
s in previously analysed Lung Cancer data [24]. However,
ung Cancer3 dataset contains additional mesothelioma sam-
les and is now used to solve a different diagnostic problem
adenocarcinoma versus mesothelioma) compared to diagnosis
eveloped using Lung Cancer data (adenocarcinoma versus squa-
ous versus small-cell lung cancer versus pulmonary carcinoids
ersus normal tissues).
4 Notice that for DLCBL2 dataset Savage et al. reported 88.7%
ccuracy in their paper [22], however, in the supplement the
uthors clarified that their classification procedure might be
iased, since they optimized their classifier based on test-
ng sets. When experiments were repeated using nested cross-
alidation, the authors obtained 83.9% accuracy (see supple-
ent to [22]).
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Fig. 4 An example screen-shot of GEMS. The left part of the screen contains options for the current analysis step
(classification algorithm). The summary of the entire project is shown in the right part of the screen.

First, we used the Lung Cancer [24] and
Lung Cancer2 [21] datasets with the diagnostic
task being to differentiate between cancerous
and normal tissues. The Lung Cancer dataset
contains 186 tumor and 17 normal samples, and
Lung Cancer2 dataset contains 86 tumor and 10
normal samples. The datasets were produced using
different microarray technologies: Lung Cancer

dataset was obtained using Affymetrix Human
Genome U95A chips with 12,600 oligonucleotide
probes, while Lung Cancer2 dataset was obtained
using Affymetrix HuGeneFL chips with 7129
oligonucleotide probes. The mapping of 6623
probes from HuGeneFL to 7094 probes from Human
Genome U95A was derived using Affymetrix array
comparison spreadsheets [25]. Next, we used GEMS

Table 5 Cancer-related human gene expression datasets used for preliminary evaluation of GEMS system

Dataset name Diagnostic task Number of Max.
prior (%)

Samples Variables
(genes)

Categories Variables/
samples

6 Tumors Six various human tumor types 353 7069 6 20 32.0
Leukemia3 Six types of leukemia 248 12135 6 49 31.9
Lung Cancer2 Lung cancer and normal tissues 96 7129 2 74 89.6
Lung Cancer3 Mesothelioma and adenocarcinoma 181 12533 2 69 82.9
DLBCL2 Diffuse large B-cell lymphomas (DLBCL)

and mediastinal large B-cell lymphomas
(MLBCL)

210 32404 2 154 83.8

The column ‘‘Max. prior’’ indicates the prior probability of the dominant diagnostic category.
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Fig. 5 Software architecture of GEMS.

to generate a classification model and estimate its
performance in a nested cross-validation fashion
using Lung Cancer dataset. We decided to use area
under ROC curve (AUC) as a performance metric
since both datasets are not balanced in terms of
distribution of cancerous and normal samples.
GEMS created a classification model and estimated
its cross-validation performance to be 100% AUC.
When this model was applied to Lung Cancer2
data, the actual performance was again 100% AUC.
We emphasize that, Lung Cancer2 was never seen
by the model neither during training, nor during
the performance estimation phase.

Table 6 Results of application of GEMS to five
microarray datasets not employed for algorithmic
evaluation

Dataset name GEMS
classification
accuracy (%)

Published
classification
accuracy (%)

6 Tumors 97.2 96.0
Leukemia3 98.4 98.4
Lung Cancer2 100.0 100.0
Lung Cancer3 99.4 99.3
DLBCL2 87.1 83.9

Similarly, we used Leukemia1 [1] and Leukemia2
[26] datasets with the goal to build a classifier to
predict whether a patient has acute lymphoblas-
tic leukemia (ALL) or acute myelogenous leukemia
(AML). The Leukemia1 dataset contains 47 ALL
and 25 AML samples, and Leukemia2 dataset con-
tains 24 ALL and 28 AML samples. Again, the
datasets were produced using different microar-
ray technologies: Leukemia2 dataset was obtained
using Affymetrix Human Genome U95A chips, while
Leukemia1 dataset was obtained using Affymetrix
HuGeneFL chips. We used a similar approach as
described above to map probes between datasets.
Next, we fed Leukemia2 dataset to GEMS to create
a classification model and estimate its performance
in a nested cross-validation fashion (AUC= 100%).
When this model was applied to Leukemia1 data,
the final classification performance was 99.15%
AUC.

In summary, the performance of the models as
estimated by the system on one dataset is approx-
imately equal to its performance on the indepen-
dent dataset. This provides further confidence on
the use of nested-cross-validation design both for
generating the models and for estimating their per-
f
ormance.
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Table 7 Results of cross-dataset experiments: first, we used a dataset to build a diagnostic model and to estimate
its future performance by cross-validation, and then we applied this model and computed its performance on a
different dataset

Dataset used for construction of a
classification model

Performance
estimate of
the modela

(AUC, %)

Dataset used for independent
validation of the classification
model

Performance on
the independent
dataset (AUC, %)

Name Distribution of samples Name Distribution of samples

Lung Cancer 186 tumors, 17 normals 100.00 Lung Cancer2 86 tumors, 10 normals 100.00
Leukemia2 24 ALL, 28 AML 100.00 Leukemia1 47 ALL, 25 AML 99.15

More details on datasets used for these experiments are provided in Tables 3 and 5.
a This performance estimate was obtained by nested cross-validation on the dataset used for construction of the model.

5. Limitations and future research

Although GEMS is a highly robust system for cancer
diagnosis and discovery, it can be improved in sev-
eral ways. Since many biomedical researchers and
practitioners are interested in causal discovery, we
are planning to extend and perform an evaluation
of the computational causal discovery algorithms
implemented in the system. The system evalua-
tion presented in this paper was laboratory based
with authors functioning as users of the system. In
the future, we plan to conduct a fielded evaluation
of the system, ideally, with various types of users
from different institutions and organizations. We
also believe that gene selection capabilities of the
system can be extended by SVM-based gene selec-
tion, such as the RFE algorithm [27], and additional
Markov-blanket based techniques [17,18]. The cur-
rent version of GEMS communicates with SVM clas-
sifiers by a file input/output interface. A dynamic
linked library or similar interface can provide sig-
nificant speed-up of GEMS by eliminating necessity
to write and read multi-megabyte microarray data
files. Finally, the output report produced by the sys-
tem provides minimal links to existing knowledge

gene expression datasets not employed for the algo-
rithmic comparison, GEMS completed the analysis
of each dataset within 10—30min and the output
model performed as well as or better than pre-
viously published models obtained by human ana-
lysts. Also, we used this system to perform cross-
dataset analysis of cancer diagnostic models using
two pairs of different datasets corresponding to
two different diagnostic tasks. We found that the
diagnostic models obtained by GEMS in one dataset
generalize well in data from a different laboratory
and that nested cross-validation performance esti-
mates well approximate the error obtained by the
independent validation. The system is available for
download from http://www.gems-system.org free
of charge for non-commercial use.
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6. Conclusion

In this work we described GEMS, a system for
automated development and evaluation of can-
cer diagnostic models and biomarker discovery
from microarray gene expression data. Unlike past
efforts, this system is informed by a comparative
evaluation of many classification and related algo-
rithms (e.g., cross-validation, gene selection, etc.)
applicable for this task and domain. In a prelim-
inary evaluation of the system with five cancer
rranging a web-conference with demonstration of
heir software.
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